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The plane and three-dimensional problems of diffraction of a plane gravitation- 

al wave over a tank bottom irregularity of arbitrary shape is considered using 
the general linear theory of irrotational wave.s in a fluid of finite depth. 

Such investigations using the theory of long waves were carried out in [l--3] by 
numerical methods which in a general linear formulation can only be achieved in the 
case of obstacles of the simplest shape [4-61. In this paper the height of the bottom 
irregularity is assumed small in comparison with the tank depth. This makes it possible 
to obtain asymptotic expressions for scattered waves, and to analyze these for a wide 
class of shapes of bottom irregularities. 

1. Let a perfect incompressible homogeneous heavy fluid occupy the region - 00 

<&Ye+=), - H (z, y) < z < 0, where x and y are the horizontaland 

Z’ the vertical coordinates, H = Ho - h (x, y) and Ha = con&, h + 0 
when R = ~xs+y2-+oo. We shall analyze in linear formulation the diffraction 

of a plane progressing wave propagating from z = --M over the bottom irregular- 
ity defined by function h, assuming the fluid motion to be irrotational and para- 

meter e = h&Io-1 small (ha = max 1 h 1). 
We specify the velocity potential cpO and the free surface rise c,-, of the insident 

wave by 
‘p. = Re {@,*xp (-fat)), co = Re (A0 exp Ii (rg;c - at)11 (1.1) 

aJo = --iA,go-l ch r. (z + Ho)chwl r. H exp (ir& 

cr = (gro th r,,Ho)‘!~ 

where A, and r. are known quantities and g is the free-fall acceleration. 
We denote by cp and 5 the velocity potential and the rise of the diffracted wave 

free surface, respectively. We set 

cp = ‘p. + Re {@ exp (-iat)}, t, = Co + Re {A exp (-iot)} 

and introduce dimensionless variables by formulas 

{x, y, z} = Ho {z’, y’, z’}, t = c-lt 

{(Do, a} = AogcrT1 {Qo’, em’} 

(t&, A) = A0 {co’, eA’}, h = h,h’, r. = Howlro’ 
(J -_ g%Ho-‘la~ 
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For the determination of potential a’ in dimensionless variables (at which primes 
are subsequently omitted) we have the problem 

(D,+(D,,+(I.&=o, ~z-os~=o (z=O) (1.2) 

@II, + a (0, - U&X - h,Q) - es (M&c + I$$J) = 0 (1.3) 

(z = - 1 + eI2) 

OO = - i ch r. (z + 1) ch-‘r. exp (ir&, u = froth r. 

The condition of radiation which implies that the scattered wave potential 0 exp 
(-iot) defines waves propagating from the bottom irregularity to infinity, must also 

be satisfied. Function A (2, y) is defined by formula A = i@ (2, y, 0) which foll- 
ows from the Cauchy-Lagrange integral. 

The boundary condition (1.3) creates fundamental mathematical difficulties in the 

derivation of an exact solution of the problem. We shall seek a solution of problem 

(1.2), (1.3) of form CD = CD, + ~0, + e2Q,, + . . . . using the small parameter 

e CT]. Similarly A = A, + eA, + e2A 3 + . . . . Then -Ar = i@s (x, Y, 0) 
and @r satisfies Eq. (1.2) and the boundary condition 

@I* = J&z@‘,, + h,@O, - h@o*z (z = -4) (1.4) 
A recurrent sequence of boundary value problems can be derived for the determina- 

tion of mD, and A, (n > 2), Below we restrict the analysts of wave diffraction to 
the first approximation solution . For brevity we omit subscripts at the m&own CD, 
and A,. 

2. The integral representation for 0 is obtained from (1.2) and (1.4) using the 
Fourier transform in 2, Y. In polar coordinates 

Q=(~Tc)-~~ [Ashr(z+1)+(u2thr-r)chr(z+1)](rA)’iIdr (2.1) 
C 

I = 7 f (r cos @, r sin 8) exp [irR cos (0 - y)] d3 
0 

(2.2) 

f (m, n) = ir,mF (m - ro, n)ch-lr,, A (r) = r th r - ua 

{z, y} = R (co9 y, sin y}, {m, n} = F {cos 8, sin 0) 

where F (m, n) is the Fourier transform of function h (z, y) and c is the integra- 

tion path in the complex t-plane moving along the ray Re r > 0 and by- 

passing point r = r. (A(ro) = 0) f rom below along a small semicircle. 
Let us consider the asymptotic behavior of CD and A as R + 00. For this we 

apply to integral (2.2) the method of stationary phase, then substitute the principal 
term of the asymptotics into (2.1) and investigate the integral thus obtained, using 
the theory of residues. We finally obtain 

Re {Q exp (-iat)}= R-‘lr ch r. (z + 1) ch-l rbB x 

Re {II (y) exp ti (r,R - ut - 3t / 4)l) + 0 (R-l) 

(2.3) 
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He {A exp (-Lot)} = R-W Re {II (y) oxp [i (r,R - at + (2.4) 

n i ‘q]} + 0 (R-r) 

B = (27E)-‘~zr0’.~ (1.02 - (J*)(r;A + (9 - 04)~1 

II = cos y F (TO (cos y - I), T-* sin y>i 

If the incident wave propagates at angle YO to the positive .z -axis, scattered 
waves are also defined by formulas (2.3) and (2.4) but with the multiplier II replaced 

bY rI, =-z cos (y - yo)F (m,, n,), 1711 -= r0 (cos y - cos yo) 

n, = r. (sin y - sin yo) 

The dependence of the scattered wave amplitude on y is defined by function n, 
which is determined by the two-dimensional transform of Fourier function h. Function 

II, is simplified in the following cases; 

h ‘= ha ([az” -+- &/“]‘,q (2.5) 

where Fd (m), s = 1, 2 are one-dimensional Fourier transforms of functions h, 
and Jo +) is a Bessel function of the first kind. The case of a == p corresponds to 
an axisymmetric irregularity of the bottom. 

3. Let us consider the long- and short-wave asymptotics of the distant field of 

scattered waves. We assume that function h depends on parameter 6> 0, that 
h = h(X / 6, y I@, and that the wave propagates at angle y. to the 2 -axis. 

Then, denoting by G the set of points (5, q) for which h (E, q) j; 0, we obtain 

rI, = 62 cos (y - yo)IIz (Y), Y = 6ro (3.1) 

J& = J i h (5,rl) exp ]-- ivy (5, rl)l @!.dq (3.2) 
C 

Y = (cos y - ~~0s y,)g + (sin y - sin yo)q 

The long wave approximation (v-+0). Expanding function 

E2 in power series in parameter Y, we obtain 
- cos yo)A, + (sin y - sin yo)&l + (3.3) 

111 = U ~ yi(E, rl)dEdy 
G 

Formulas (3.1) and (3.3) imply that when A, # 0 and v --t 0 the dependence 

of the amplitude of the scattered wave free surface rise on p is close to that defined 
by function 1 cos (y - yo) 1. Hence in a system of coordinates whose 5 -axis co- 

incides with the ray y = y. the distant wave field weakly depends on y. and on 
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the shape of the bottom irregularity when b2A0 = const # 0. If lis = 0, :I,' -I- 
AZ2 > 0 , the distribution of wave amplitudes with respect to Y is determined 

by the constants A1,s. 

Formulas (2.3), (2.4), (3. l), and (3.3) make possible the derivation for a scatter- 
ed wave of the eqution of the line of constant amplitude of the free surface rise, and 

of velocity vector components along the x:, y , and z axes (with z = const). In 
polar coordinates these equations are, respectively, of the form 

R = c cos2 yl, R = ccos4 yl, R = csin22y,, R = ccos2yl 

(yl = y - yo, c = const) 

Short-wave asymptotics y 3 00. Let us consider the asymp- 
totic behavior of n, as (y + oo). If Y = YOV n, is independent of Y 

(ns = A,). Assuming that y # y,, we apply to integral (3.2) the method Of 

stationary phase for multiple integrals [S]. since 1 AY (E, q) 1 # 0, the integral 
us has no internal stationary points, and for a fairly smooth function h and G = 

(- 00, oo) s (- co ,oo) that integral and, consequently, the scattered wave ampli- 
tude are of a fairly high order of smallness with respect to parameter Y. In particular 
l-I2 = 0 (v-“) if h E Cm. 

If the region G is bounded and function 

h fairly smooth, the basic contribution to 
the asymptotics of integral n, is provided 
by the boundary points of that region [9]. It 

can be shown by integrating (3.2) by parts 
(formula (1.3) in [9] ) that the higher the 
smoothness of h in the neighborhood of the 

region boundary the lower is the scattered 
wave amplitude in the direction 1 # ~0. 
Thus, when conditions h = dh / 13s = 
. . . = Ph / &?’ = 0 (y # L- yo) or 

h = dh / dy = . . . = d”h / iY$’ = 0 (y -# yO, zc - ~0) are satisfied at the boun- 
dary of G , then II, = 0 (Y-“~). 

Let us consider an irregularity of the bottom with a vertical side boundary (h # 0 
at the boundary of G). As v ---f co , the basic contribution to the asymptotics of 

II, is provided by the boundary points at which the unit vector of the normal to the 

boundary is parallel to vector VY [9], where VY = (cos ~0 - cos y, sin ~0 
- sin y). At such points (A, and Aa in Fig. 1) the wave reflection angle is equal 

to its incident angle, with the reflected ray at angle y to the 2 -axis. It can be 

shown, as in [S], that in the case of a smooth boundary the contribution of points A, 
to the asymptotics of Us is equal 0 (v-(“s’l) Ins), where n, > 2 is the order 

of contact of the tangent and the boundary G at point A,. If the section of the 

boundary is the neighborhood of point A, is rectilinear, its contribution 0 (v-i) 

to the asymptotics is the highest. 

4. Let us consider bottom irregularities of specific form. Let h be a function of 
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the type (2.5). For an arbitrary function hs (u), U = (a2 -!- ff&i”)‘:~ the integral 
II, is determined by numerical integration, In a number of cases it is defined in 
terms of elementary and special functions, for instance 

h, (U) = (1 - u2z-2)h (u < Z), h, = 0 (u > 1) (4.1) 

n, =y 1121-11-l (ap)-~Pr (E” + 1) cos (y - yo)g-cI,+l (E) 
]j, (u) = I:’ (I” + &“) -%, ri, == 2d cos (y - yO) exp (-g) 

h, (zf) =: exp (-Zt-2~‘), IS, = 311” cos (y - yo) exp (-r/,g”) 

(5 = 17221, U > 0, /.l > 0, z > 0) 

where (I? (2) is the gamma function. 
For hs of the form (4.1) the scattered wave amplitude is maximum when y = 

y,,. The ratio of wave amplitude at y = yO to that at y = y. $ 7~ is the great- 
er the greater are m, and E. When hs~ Cm, the scattered wave amplitude is 
zero along the rays y = y. & n / 2, however, if hs is not infi~tely differenti- 
able (the first expression for hs in (4.l)),other directions y exist with weakly defined 
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Fig. 2 

diffraction effects, when m. and 1 are fairly large. 
The distribution of scattered wave amplitude with respect to y is defined by the 

parameter BI = B I nl I . The dependence of BI on y E IO, nl 

h, = toss (J-CR I 21) (R < I), h3 = 0 (R > 2) (4.2) 

is shown in Fig. 2 for the case of an axisymmetric irregularity of the bottom ,(yO = 0). 

In diagram a of Fig, 2 the half-width E of the bottom irregularity (r. = 1.5, s = 0) 

is varied, and in diagram b it is the exponent s in formula (4.2) with (r. = I = 1). 

values of parameters Z and s are indicated at the respective curves. 
The comparison of curves in Fig. 2 shows that the amplitude of the scattered wave 

generally diminishes as the width of the bottom irregularity decreases and its smooth- 

ness increases. 
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bet h be a function of the form (2.6) which corresponds to a nonaxisymmetric 
irregularity of the bottom. The scattered wave amplitude, nevertheless, weakly dep- 
ends on the shape of the bottom irregularity when the incident wave is fairly long(see 
Sect. 3). 

We determine functions h, (u), s 2;: 1, 2 using formulas 

&?=I (Iui<Qt %=O (l@l>U 
(4.3) 

& = cos i&u- (1 u 1 < 13, h, = 0 (I u 1 > Z,), ka = 37 (24)-1 (4.4) 

h, = exp (-31,-2u2) (4.5) 

When ma max (11, &} > 1 the shape of irregularity affects in the case of such 
h the distant field of scattered waves. It manifests itself in the dependence of B, 

on y. when y = y. + JI and in the impairment of symmetry of the scattered wave 
amplitude over the angle relative to the ray JY = y0 ,, 

The dependence of B, on y for four wave incidence angles y. and r0 = 0.1, 
1, = 0.1, I, = 10 are shown in Fig.3, Curves l-3 relate to bottom irregularities for 

which iimctions h,, s = 1, 2 I are specified by formulas (4,3)-(4,5), respectively. 
This shows that the scattered wave has its; highest amplitude in the neighborhood of 
the ray Y = Yo. The value of BI (v=vo = B 1 F1 (0) 1 I F, (0) 1 is independent of 

YO. As in the case of axisymmetric irregularity of the bottom, the improvement 
of the irregularity smoothness generally lowers the scattered wave amplitude. 

5. The problem of surface wave diffraction over a small irregularity of the bottom 
of the form h = h (x) is considered in a similar manner. Let us assume that the 
incident wave propagates at angle Ys to the z -axis. We set 

cp = Re {(Q. + @)exp Ii (n,y - ut)l’) (5.1) 

5 = Re {(A, exp (im,,z) + A)exp ii (nay - ~41) 

CD0 = -iA,, g6ch r. (z + H&h-l r$Yo exp (im&I 

r@ =: (r&j2 + %)V, 0 = (gro th r,Ho)‘~~ 

and introduce dimensionless variables using formulas of Sect. 1. For the determina - 
tion of CD (z, z) we obtain the boundary value problem 

4& + @*, - n,% = 0 (5.2) 

@z - aa@ = 0 (2 = O), a), = h,q), - ho,,, (2 = - 1) 

Q, = - i ch r. (Z + 1) ch-lr, exp (im&, G = (r. th to)“* 

The scattered wave amplitude is calculated by formula A = i@ (z, 0). The integral 
representation for A is derived from problem (5.2) using the Fourier transform with 
respect to x 

A= * 
2n ch r, !I 

’ (mJm + no”) F (m - mo) x (5.3) 
e 

t(r - 02thr)chr- A, sh r] r-lA_l exp (imx) dm 
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where (r = (m” + no2)‘/z, A = r th r - a2),, c is the integration path in the 
complex m -plane that runs on the real axis bypassing poles m=-mm, and 
m = m, along small semicircles above and below them, respectively, and F (m) 

is the Fourier transform of function h (5). 

Integral (5.3) is similar to that considered in [lo]. When ( I 1 -+ CO , its asym- 
ptotics is of the form 

A = A+ exp (* imor) -t 0 (e-*lxI) (x3 f co, 6 > Q) (5.4) 

A, = iY (ro) F (0) set y,,, Y = r. [l -I- sh (2ro) (2ro)-11-1 (5.5) 

A_ = - iY (ro) F (- 2r, cos y,,) cos 277, set y. (5. C) 

Formulas (5.1) and (5.4) show that the incident wave generates a field of scatter- 
ed surface waves which includes the reflected andpassing waves whose amplitudes are 
of order F and, also, the system of waves whose amplitudes exponentially decrease 

with increasing / LX 1 and which are localized in the neighborhood of the bottom ir- 
regularity. The latter waves propagate along the irregularity when no # 0 and 
become standing waves when no = 0 . Thus an irregularity of the form h = h (5) 

has wave guiding properties [ll]. 

Formulas (5.4) show that the scattered wave amplitude is the same for incidence 
angles I!ZYO and is an increasing function of y,, E (0, n / 2). Function ) A+ 1 , as 

a function of ro, has the unique maximum max,J A+ 1 = 0.37 1 F,(O) SW y. 1 
that is attainable for r. s 1.2 (Fig. 4). 

The dependence of the reflected wave amplitude on r. and y,, is more comp- 

lex. For small ro in conformity with (5.5) and (5.6), we have IA-I--,lA+I 
1 cos 2y, I,hence A _ = o only when y. = n 14. This case is represented in Fig, 4, 

where curves l-3 correspond to functions h (z) of the form (4.3)-(4.5), and r. = 0.1 
and 1 = 1. If F (g) is an oscillating function and f~ fairly large, there exists a 
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Fig. 4 

set of incidence angles Yo for which no reflection wave is generated, An increase 
of ro and improved smoothness of the bottom irregularity generally result in a 
decreaseof iA-1 when yo~[O, n/4). 

The proposed approximate treatment of the problem of wave scatter over bottom 
irregularities of the form h = h (5) is inapplicable when y,-+zt?En/. 
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